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J. Phys. A: Math. Gen., 13 (1980) 361-372. Printed in Great Britain 

Uniform theory of inhomogeneous waveguide modes near 
cut-off 

J M Arnold 
Department of Electrical and Electronic Engineering, University of Nottingham, 
Nottingham, UK 

Received 28 November 1978, in final form 4 June 1979 

Abstract. A uniform asymptotic method is used to calculate the modal eigenvalues for an 
inhomogeneous dielectric waveguide for modes near cut-off, thus extending previous work 
on uniform methods. The existence of a finite homogeneous cladding medium is properly 
accounted for, with arbitrary variations of core refractive index. 

1. Introduction 

In the preceding paper (Arnold 1980) a study was carried out of the construction of 
asymptotic approximations to the eigenvalue of the differential equation 

d24/dp2+(U2-  V2f + p / p 2 ) 4  = O ,  (1.1) 

mE(0 ,  1 , 2  , . . .  }, (1.2) 

where 
1 2  , u = s - m ,  

f is an arbitrary analytic function of p2 such that 

( 1 . 3 ~ )  

(1.3b) 

V is a large parameter and U 2  is the eigenvalue which is required to be found. This 
differential equation arises in the theory of wave propagation on a dielectric cylinder 
having a radial variation of refractive index. Boundary conditions 

(9 4 - p m + l / 2 ,  P"0 ,  ( 1 . 4 ~ )  

(ii) d4f dp = K4, p = l  (1.4b) 

have to be applied, where 

K = $+ WKL( W)/K,( W), (1.5) 

W2' v2- U2 (1.6) 
and K,( W) and KL( W )  are the modified Hankel function and its derivative respec- 
tively. By assuming that U 2  was not too close to V2 and ,u was small compared to V2, it 
was possible to obtain an expression for the eigenvalue U 2  (as V + a) by constructing 
an asymptotic approximation to 4 which is valid on all 0 G p 4 1. This is in contrast to 
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the approach of Kurtz and Streifer (1969), who used matched piecewise-uniform 
asymptotic representations. A perturbation theory for quasi-quadratic f ,  

f = P2(l +a), 
was outlined, where E is a small parameter and g an arbitrary analytic function of p2 .  

However, the case of near cut-off modes, when U 2  - V2,  was not considered, and 
this case introduces complications in the determination of the eigenvalue which we wish 
to examine in detail here. In the JWKB analysis of wave propagation problems 
(Froman and Froman 1965) certain points, called turning points in quantum mechanics 
and caustics in geometrical optics, are known to play a crucial role; at such points JWKB 
theory fails to give a valid asymptotic representation. In this problem, the caustic is the 
zero of the leading order term in the coefficient of q5 in equation (1.1) (as V + CO), that is 
to say a point p1 at which 

u2= V2f, p = P1. (1.7) 
Since f = 1 at p = 1, it is apparent from (1.7) that, as U':, V 2 ,  p1 + 1. Thus there is a 
confluence of the caustic p =PI and the end-point p = 1 at which the boundary 
condition (1.4b) has to be applied. This invalidates the procedure used previously 
(Arnold 1980), as it was there assumed that the caustic and the boundary point were 
sufficiently well separated to allow the use of the Liouville-Green approximation 
(Olver 1974) to approximate q5 at the boundary, this approximation subsequently being 
obtained from the original uniform representation. This means that higher-order 
approximation functions (Airy functions) are required in order to approximate the 
eigenvalue, and we shall seek to obtain these also from a uniform representation. 

To do this it is convenient to make some small changes to the original differential 
equation (1.1). For this purpose we use (1.6) to obtain 

d2c$/dp2 + ( V 2 Q 2  - W 2  + k/p2)q5 = 0 ,  
where 

Q2=l-f.  

We now regard W 2  as an eigenvalue of (1.8) and assert that Q2 satisfies the following 
conditions: 

(9 Q2 = 1 when p = 0; (1.10a) 

(iii) Q2 is an analytic function of p 2 ;  (1.1Oc) 

(ii) Q2 = O  when p = 1; (1. l o b )  

(iv) 

(VI 

V2Q2-  W 2  has one zero in O s p  s 1; 

V2Q2- W 2 + k / p 2  has two zeros in O s p s  1. 

(1.10d) 

(1.10e) 

Furthermore, it is convenient to express the fact that U 2  is nearly equal to V 2  by 
allowing W 2  to be small; 

A = W2/  V 2  - O( V-"), K > O  (1.11) 

is introduced as a hypothesis. This then ensures that the terms V 2 Q 2  and W 2  have 
different asymptotic orders in V. The exponent K in general depends on the boundary 
conditions, but in this case it transpires that K = $is correct; we shall simply assume that 

A - O( v - ~ / ~ ) .  
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2. Uniform asymptotic solution 

In the preceding paper we showed how a Liouville transform 

(2: - z2)(dz/dp)2 = U 2 /  V 2  - f 
= Q2 - W 2 /  V 2  

could be constructed, such that 

where p1 is the zero of the integrand. The point z is given in terms of p by 

where 

A = W z / V z .  

( 2 . l a )  

( 2 . l b )  

( 2 . 2 ~ )  

(2 .26 )  

(2 .4)  
In this sequel we will construct this transform in an indirect way which has the advantage 
of giving an explicit expansion equivalent to (2 .3 )  (which is implicit); evaluation of this 
expansion is quite simple when p = 1 ,  which we need to apply the boundary conditions. 

We begin by introducing the intermediate variable 5 :  

(Si - 52)(d5/dp)2 = Q2. (2 .5)  
In order that 5 and p be analytic functions of each other it is necessary to ensure that the 
zeros of both sides of equation (2.5)'are consistent; therefore 

and 

Next we suppose that 

z = S+ +A2~2+O(A3) .  ( 2 . 8 ~ )  

This form for z suggests itself as an extension of the method used by Olver (1975) for 
the case p = 0. 

If z is to be the Liouville transform (through 5) of p, then q1 and q2 have to be chosen 
so that 

(Z:-z2)(dZ/dp)2= Q 2 - A ,  (2 .8b )  
and therefore 

(2: - z 2)(dZ/d5)2 = ( Q2 - A )(dp/d[)2 (2 .9)  
(2.10) = 5; - L2 - A  (dp/d5)2 
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where (2.5) has been used. If we suppose further that 

2: = a~+Acrl + A  ' cy2  +O(A3), (2.11) 

then we may substitute (2.86) and (2.11) in (2.10), and equate powers of A to find 

(2.12a) 

l ~ i  - (li-4") d v i / d l  = t [ ( d ~ / d l ) ~ +  ail, (2.126) 

and so on for higher-order terms. Equation (2.126) is a differential equation for v1 
which is easily solved: 

(2.13) 

The parameter a l ,  as yet undetermined, may be chosen to make q1  vanish at the origin. 
In fact, this ensures that v l  has only odd powers of 5 in its expansion about l =  0, which 
is necessary in order that z and l be analytic functions of each other at 5 = 0 for any A .  
Thus 

and using (2.5) on the right of (2.14) gives 

7r 

(2.14) 

(2.15) 

Similar considerations hold for a2 and v 2 ,  but, as we shall not use them, we need not 
dwell on them; the differential equation for v 2  is 

and a2 is given by 

-az lr =p1(Y1 1 1  -- i' (1 -+)- dQ2 dp 
2 4 dp Q3' 

where 

(2.17) 

(2.18) 

(Equation (2.17) is obtained by expanding (2.26) in powers of A .  The integral exists 
because, as p + 1, the term in brackets vanishes.) In principle, all higher-order terms 
subsumed under the O(A3) terms could be obtained in this way. Instead, we make a 
small modification; we drop the term O(A3) altogether from (2.86), so that we have 
exactly 

t = l + ~ v ~ + ~ ~ r / ~ .  (2.19) 

Then equation (2.10) will need to be modified to 

( t : - ~ ~ ) ( d t / d l ) ~ =  li-12-A(dp/dl)2+O(A3) (2.20a) 
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and (2.86) becomes 

( ~ : - ~ ’ ) ( d ~ / d p ) ~ =  Q2-h +O(h3) .  (2.206) 

Since p, f and z are all analytic functions of each other, the O(A 3, terms are uniform 
on 0 d p s 1, and may be transferred to the left-hand side of (2.206) to give 

[z:-  z 2 +  O(A3)](d~/dp)2 = Q 2 - A .  (2.21) 

As previously, z1 is given by (2.11). We may now absorb the O(h ’) term in (2.11) into 
the corresponding term in (2.21), and define z1 exactly by 

(2.22) 2 z : = Q ~ + A Q ~ + A  ( Y ~ .  

This completes our analysis of the transformation of the independent variable. 
Now we transform q5 by 

q5 = (dz/dp)-1’2@. (2.23) 

Then @ satisfies 

d 2 @ / d z 2 + { V 2 [ z : - z 2 + O ( h 3 ) ] + ( p / p 2 ) ( d p / d z ) 2 +  h}@= 0 ,  (2.24) 

where 

As in the preceding paper it can be shown that 

and so, if p - 0(1) ,  

-(-) CL dP = < + O ( l ) .  
p 2  dz  z 

(2.25) 

(2.26) 

(2.27) 

The symbol 0(1) refers to a function of z which is analytic on 0 s p  d 1 and is 0(1) as 
V+oO. 

Similarly, h is an 0(1) analytic function, and V20(A3) - 0(1) if A - O( V 2 l 3 ) .  All 
these terms may be collected together to give 

d2@/dZ2+[ V’(Z:- Z ~ ) + / L / Z ~ + ~ ] @ =  0, (2.28) 

where 

s - O(1). 

@ - @ 0  

As before (Arnold 1980) we can show that, as V + 43, 

where 

d2@o/dz2 + [ V2(2 ? - z ’) + / L /Z  ’]@o = 0, 

and finally 

@ - (dz/dp)-1’2@o. 

(2.29) 

(2.30) 

(2.31) 

(2.32) 
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This approximation was justified by the methods of Lynn and Keller (1970) in the 
preceding paper. 

The approximation (2.32) with Qo given by (2.31) is identical to our previous one, 
but with the difference that we have a totally different representation for z as a function 
of p (equation (2.19) as opposed to equation (2.3)). 

The solution of (2.31) is (Arnold 1980) 

= Z m + l / 2  exp(- vz2/2)~t" (  vz2), (2.33) 

and this solution satisfies the boundary condition (i) at the origin, as z and p are analytic 
functions of each other and z + 0 as p + 0. The parameter Y is defined by 

(2.34) 2(2Y + m + 1) = vz:. 

A contour integral for Lt"(u) is (Arnold 1977-t, 1980) 

(2.35) 2" e-u'2Lt"(u) =---(e 1 - '  v m 1 ~ l + e v ~ i ~ 2 )  
21ri 

with, for j = 1,2 ,  

(2.36) 

The contour C1 passes from s = -1 to s = meiu(v > 0) and C2 is the image of C1 in the 
real axis, in the reverse direction. 

Thus, we have established the same approximation as in the preceding paper, but 
with a different representation for z, facilitated by the assumed smallness of A. 

3. Non-uniform asymptotic solution 

We have yet to determine the eigenvalue W2, which is a parameter in v through 
equations (2.11) and (2.34). This is determined through the boundary condition (1.46) 
at p = 1, and to do this we seek a simpler approximation than (2.32); we approximate Qo 
further in the vicinity of p = 1. 

Let z + zo as p + 1. Then, from equation (2.21), 

[z; - Z: + O(A 3)](d~/dp)2 = -A 

z ; - z :  - O(A). (3.2) 

(3.1) 

(since Q2 = 0 at p = 1). This indicates that 

Thus, as A + 0 ( W2 + 01, zo + ZI. This is the confluence of boundary and caustic referred 
to in 0 1, and it becomes clear that the point zo will lie in the vicinity of z1 if A is small 
enough. The Liouville-Green approximation to (Bo will fail in this case; in fact we might 
expect the correct approximation to be in terms of Airy functions. The Liouville 
transform of equation (2.31), 

(PO = (dT/dz)-'''q, (3.3a) 

-T(dT/dz)2 = Z :  - z', (3.3b) 

t Several typographical errors occurred in this paper; see reference. 
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would lead us to expect an asymptotic approximation for 'P (see Olver 1974), 

'P - ' P O ,  (3.4a) 

q0 = A i  Ai( V2l37) + A Z  Bi( V 2 / 3 ~ )  

where 

(3.46) 

and Ai(X) and Bi(X) are the standard Airy functions (Abramowitz and Stegun 1965, 
Olver 1974). A I  and Az  are constants which we must find. To do this we note that (3.3) 
and (3.4) imply 

Q,- (dT/dz)-'/2(A1 Ai( V 2 ' 3 ~ )  + A z  Bi( V 2 / 3 ~ ) ) ,  (3.5) 

and we try to extract such an approximation from the integral representation (2.36). As 
this is precisely the method used by Slater (1960) to approximate the Whitaker 
function, which is essentially the same as our function Q0, we need only state the results. 
By integrating (2.36) by the method of steepest descent (Chester et al 1957), expressing 
the result as a sum of Airy functions and comparing with (3.5), we obtain 

A1 =A0 COS(VT) ( 3 . 6 ~ )  

and 

A2 = -Ao sin(v7). (3.6b) 

The constant A .  may be set to unity because of the homogeneity of the differential 
equations. 

By using ( 3 . 3 ~ )  and ( 3 . 4 ~ )  in the boundary condition (1.4b), we can obtain the 
eigenvalue equation 

d'Po/dT = Ko'Po, 7 = To,  (3.7) 

where 

and 

T~ = lim ( T ) .  
P +  1 

(3.8) 

(3.9) 

Expressing 'Po in terms of the Airy functions by equation (3.4b) and rearranging leads 
to 

(3.10) 

where the prime implies differentiation with respect to the argument of the Airy 
functions and we have used (3.6) to evaluate the left-hand side. Equation (3.10) is to be 
solved in conjunction with equation (2.34) for v (or for z l ,  since equation (2.34) 
connects v and z1 directly). 

In order to solve equation (3.10) asymptotically as V + CO, we need to estimate some 
of the parameters appearing in it. We already have equation (2.22) for z l ;  in addition 
we require expressions for zo, T~ and various derivatives of T and z evaluated at p = 1. 
The principal method for finding these values is to allow p + 1, l+ lo in (2.8), (2.12), 

Ai'( V 2 / 3 ~ 0 )  - V-2/3K0 Ai( V2l3m) 
Bi'( V2l3n,) - V-2'3Ko Bi( V 2 ' 3 ~ 0 )  ' tan(v.rr) = 
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(2.5) and (3.3b) or their differentiated forms. In this way we obtain the following 
expressions: 

where a. and a1 are given by ( 2 . 1 2 ~ )  and (2.15) respectively, and 

The derivatives that we require are 

dT dz d r  -’ 1/2 

dz dp dP 
(- -) = (-) =(:to(”)) 

(3.11) 

(3.12) 

(3.13) 

(3.14) 

(3.15) 

= (2-2/3a;1/3p1)1/2 + o(A). (3.16) 

Further expressions for the other derivatives in equation (3.8) can be obtained, but we 
shall show that they are in any case negligible to the order to which we are working. 

We are now in a position to explain the purpose of the condition A -O(V-2/3) .  
When this holds, the argument of the Airy functions in equation (3.10) is 

v ~ / ~ T ~ -  o(I), (3.17) 

by equation (3.13). If A is allowed to be larger than O( V-2/3),  the Airy functions may be 
replaced by their asymptotic expansions for large argument, in which case the right- 
hand side of (3.10) is exponentially small, and we are returned to the case we considered 
earlier (Arnold 1980). The above condition on A is therefore a means of ensuring that 
the eigenvalue W2 is small enough to justify separate treatment. 

We now estimate the order of magnitude of the term KO in (3.10), given by equation 
(3.8). We have 

K = ;+ WKk( W)/K,( W ) ,  

and this form invites us to consider two possibilities: 
(i) W is large, even though A is small; 

(ii) W is small. 
Possibility (i) above can arise since 

A = w2/ v2 - O( 1 , 7 - ~ / ~ )  ( 3 . 1 8 ~ )  

and therefore 

w - 0(v213). (3.18b) 

Possibility (ii) may arise because it is obviously conceivable that, for some V, W2 = 0. 
This case corresponds to cut-off of the propagating mode, and does not violate ( 3 . 1 8 ~ ) .  

If (i) above is true, then 

K - - w +$+O( W-l)  (3.19) 

-O( v2/3). (3.20) 
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Therefore, as V + 03, the terms containing second derivatives in equation (3.8) are 

V - ’ / ~ K ~  - 0(1). (3.21) 

negligible, and we obtain 

In fact, if we let 

x = v ~ / ~ T ~ ,  (3.22) 

then equation (3.10) may be approximated by 

Ai’(X) +X1/’ Ai(X) 
Bi‘(X) +X’/’ Bi(X) 

tan( VT) - (3.23) 

when the precise form of KO is calculated. The value of A satisfying the boundary 
condition at p = 1 is obtained by solving equations (3.23) and (2.34) for A ,  by 
eliminating v. 

We postulate the existence of an expansion 

A = V-2/3[A0 + A + O( v-2/3)]. (3.24) 

It turns out that A. and A cannot be entirely independent of V, but are functions of the 
parameter 

p = V-‘l3A (3.25) 
where 

A = V - 2N/ (YO, ( 3 . 2 6 ~ )  

N = 2q + m  + 1, q E ( 0 ,  1 , 2 . .  .}. (3.26b) 

Nevertheless, since V and N can be regarded as independent of each other, we may also 
consider p and V to be mutually independent for the purpose of obtaining an 
asymptotic approximation for A .  

Since equation (3.23) is not changed if an integer q is subtracted from v, we let 

v = q + e ,  o s e < i ,  (3.27) 

and, in the same spirit as equation (3.24), we suppose that 

e = eo + el v-ll3 + O( v-’l3) 

x = xo + x1 v-’’3 + O( v-2/3). 
and 

(3.28) 

(3.29) 

Then substitution of (3.27), (3.28), (3.29), (3.24) in (3.23) and (2.34), (using (2.22) to 
express z:  as a series in powers of like (3.24)) and elimination of v by equating 
similar terms leads to 

and 

(3.30) 

(3.31) 

(3.32) 
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Equations (3.30) and (3.31) are the final expressions for the coefficients in the 
expansion of A, and, since A = W’/ V’, we may compute W 2  from these equations. The 
parameters cyo, a1 and p1 are given by (2.12a), (2.15) and (3.14)respectively. (It should 
be noted that, despite the minus sign in (3.30), A. is positive because a1 is negative.) The 
most useful expression we can derive is for W’/ V :  

W2/  V = -aoA/a1 + A  1 + O( V-1/3) ,  (3.33) 

with A l  given by (3.31) and (3.32). 

exactly quadratic index variation, 
To obtain some insight into this expression, it is instructive to consider the case of 

(3.34) 2 f = p 2 ,  Q = 1 - p 2 .  

Then 

(Yo = -a1 = 1, (3.35) 

and we have 

W 2 /  V = Ai- A i .  (3.36) 

The equivalent result neglecting the effect of the cladding medium, which we have 
shown elsewherz is accurate for modes not close to cut-off (Arnold 1980), would be 

W 2 / V =  V - U 2 1 V =  V - 2 N  (3.37) 

= A. (3.38) 

This clearly shows that the term A l  in (3.33) is due to the presence of the finite cladding 
boundary. As A becomes sufficiently large, with V fixed, A. and Xo also have large 
values, and the term A becomes exponentially small through the behaviour of the Airy 
functions in equation (3.31). Since large A corresponds to large W2,  this is in exact 
agreement with our previous result (Arnold 1980), that for modes not close to cut-off 
the effect of the finite boundary is an exponentially small correction to the eigenvalue 
for an unbounded medium. 

This completes our analysis of the case (i) above. We now repeat the analysis 
assuming (ii) above is true; W may not be large enough for (3.19) to hold. 

In that case we find that 

K-0(1)  (3.39) 

and so 

v - ~ / ~ K ~ - o ( v - ~ / ~ ) .  
Then it is clear that (3.10) may be approximated by 

(3.40) 

(3.41) 

Since none of the other approximations made in case (i) are affected, we may carry the 
analysis through to obtain a modified expression for A 1:  

(3.42) 

Equations (3.30) and (3.32) remain valid as written. 
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It is of some interest to calculate the value of V for which W = 0 exactly. In that case 
we find 

KO - O(1) (3.43) 

and 

‘To = 0 

and so equation (3.10) becomes 

Ai’(o) + o(v-2/3) tan( YT) = - 
Bi’(0) 

(3.44) 

(3.45) 

(3.46) 

(3.47) 

Also we have, since A = 0, 

(3.48) 2 
21 =a09 

and so, equation (2.34) is equivalent to 

2~ - $+ o( v - ~ / ~ )  = va0, 
and finally 

v = ( ~ N - $ ) / ~ ~ + o ( v - ~ / ~ )  

(3.49) 

(3.50) 

is the final expression for the cut-off frequency, at which W = 0. When the index 
variation is exactly quadratic, 

a()= 1 (3.51) 

and (3.50) agrees with the correct result for this case (Arnold 1977). Since the error 
term in (3.50) is O( V 2 l 3 ) ,  this approximation is only valid for a mode whose cut-off 
frequency is high enough to ensure the smallness of this term. 

4. Conclusions 

It has here been shown how approximate expressions can be obtained for an eigenvalue 
problem arising in the theory of inhomogeneous dielectric waveguides; in particular, we 
have been concerned with the case of those modes which are close to cut-off, where the 
existence of finite boundaries has a significant effect on the asymptotic (V+cO) 
behaviour of the eigenvalues. The use of uniform asymptotic approximations to the 
solution has been demonstrated, and the further approximations necessary to solve the 
eigenvalue problem have been evaluated. It is hoped that these methods may even- 
tually lead to a complete and systematic theory of propagation in waveguides having 
arbitrary variation of refractive index, under the assumption V + a. Detailed cal- 
culations using these expressions are to be described elsewhere. 
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